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Abstract

Neural networks can transform 3-dimensional data in a manner reminis-
cent of an ambient isotopy. With some modifications, a neural network can
be trained to manipulate the vertices of a knot while respecting its topo-
logical structure. We use the discrete Mobius energy as a loss function to
incentivize a neural network to smooth out curves in a knot, without per-
forming illegal operations. By introducing unconventional neural network
layers, we are able to untwist highly tangled polygonal knots until a hu-
man can visually recognize whether they are topologically equivalent to
the unknot.
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Chapter 1

Introduction and Definitions

In this paper, we introduce a new heuristic method for converting high-
energy knots into lower energy variants in the same equivalence class. We
accomplish this by running the vertices of a polygonal knot through a spe-
cialized neural network, designed to reduce knot energy via operations
akin to Reidemeister moves.

We begin by defining some basic terms in knot theory, and will then
connect these concepts to the world of neural networks.

1.1 Basic Knot Theory

1.1.1 Knots

A knot is defined as a closed curve in 3-dimensional space. More formally,
we say that a knot is a continuous function K : [0, 1] — R3 such that K (0) =
K(1)and forall z,y € [0,1),

Kx)=K(y) =z=y.

In other words, K is “nearly” injective. The only two inputs which it
does not map to different elements in R? are 0 and 1.

A knot is polygonal if it is a piecewise linear function, whose image is
the union of a finite set of line segments in R? such that the intersection
of any two line segments consists of at most a single point. The endpoints
of these line segments are called the vertices of the polygonal knot. It is
possible to represent a polygonal knot by an ordered list of its vertices.
This representation is most suitable for neural networks, which operate on
arrays of data.
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1.1.2 Ambient Isotopies

In 3-dimensional space, an ambient isotopy h : R? x [0,1] — R3 is a continu-
ous map such that the curried function

is the identity function, and for all ¢ € [0, 1],
h('> t)

is a homeomorphism from R?3 to itself, where a homeomorphism is a contin-
uous function with a continuous inverse. In order to simplify notation, we
often write h;(x) instead of h(z,t).

One can intuitively think of ambient isotopies as continuous deforma-
tions in space.

We can construct equivalence classes out of knots that are continuous
deformations of one another. Formally, two knots K1, K» are equivalent if
there exists an ambient isotopy & such that

h1 oK 1= KQ.
We write K1 ~ Kj to denote their equivalence. We may also say that
K and K3 are ambient isotopic.
1.1.3 Continuity and Metrics

On the half-open interval [0, 1), we define the interval metric d; such that for
all¢,t' €10,1),

dr(t,t') = min(|t — ¢'|,min(¢,1 — t) + min(¢', 1 — t)).

The interval metric treats elements of [0, 1) as positions along a circle with
unit-length circumference, and returns the shortest path between two posi-
tions along the circle.



Chapter 2

Neural Networks as Ambient
Isotopies

Neural networks are constructed out of layers. Each layer accepts input
from the previous layer, performs a set of operations upon the input, and
then passes the result to the next layer. We can abstractly define a layer L
as a function from R% to R%, for d;,ds € Z*. A neural network as a whole
is a composition of its layers. In this paper, all layers will map from R? to
R3.

We say that the composition of one or more neural network layers N :
R3 — R3 implements an ambient isotopy if and only if there exists an ambient
isotopy h such that

hy = N.

Theorem 1. For any two neural networks N, M that implement an ambient iso-
topy, their composition N o M also implements an ambient isotopy.

Proof. Let hY and h™ be ambient isotopies implemented by N and M, re-
spectively. Then, consider the function f : R3 x [0,1] — R? defined as
follows:

fla,t) = {hévt—ﬂhi” (x)) t>

h%(w) t<

N[ N[

For any ¢ € [0,3], f(,t) = hd! is a homeomorphism. Since the composi-

tion of two homeomorphisms is also a homeomorphism, for any ¢ € (1, 1],
f(,t) = hY_; o kM is a homeomorphism as well. f(-,t) is thus a homeo-
morphism for all ¢ € [0, 1].
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Next, we note that f(-,0) = h}!, and as h is an ambient isotopy, h}! =
f(-,0) must be the identity function.

Additionally, since both A and h are continuous functions and hd, ;o
h]l” = hé‘f when t = %, f is also a continuous function. This demonstrates
that f satisfies all the properties of an ambient isotopy.

Lastly, since

P =R o = N oM,
N o M implements an ambient isotopy. O

From theorem [1, we can conclude that if a neural network performs
a sequence of operations that all implement ambient isotopies, then the
neural network as a whole must implement an ambient isotopy.

2.1 Operating on Polygonal Knots

Often, neural network layers will act on an array of inputs, rather than a
single input. As shorthand, we write

L([xo, .., Tn-1)) := [L(T0), -y L(T0=1)]

whenever alayer L : R? — R3 actson an array of n € Z* inputs 7o, ..., To_1 €
R3. By convention, elements of arrays will be zero-indexed.

Unfortunately, neural networks can only accept a finite number of in-
puts at the same time, and so cannot operate on the entire image of a polyg-
onal knot. Instead, a neural network can operate on a polygonal knot’s ver-
tices, and we can establish a correspondence between those vertices and the
knot itself.

2.1.1 The ¢ function

Consider an ordered list of n 3D coordinates [Zy, ..., Z,—1] such that for any
two integers i, j € {0,...,n — 1} where i # j,

1. 7; # 7;,and
2. Forall A\;, A2 € [0,1),
T+ (L= A)Tir # MaTj + (1= A)T5+

where i™ £ (i + 1) mod n and j+* £ (j + 1) mod n.
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Let I denote the set of all finite-length arrays containing elements of
R? which satisfy these properties, and let K denote the set of finite-length
arrays which do not satisfy them. An immediate corollary is that all arrays
in K must have at least 3 elements.

There is a convenient correspondence between K and the set of all polyg-
onal knots. From any ordered listin XC UK with n elements, we can construct
a function K : [0,1] — R3 where

K(t) = (1 — (nt mod 1))Z;) + (nt mod 1)Z; 5

fori(t) = [nt] mod nand i*(t) = (|nt] + 1) mod n.

The function K linearly interpolates between the adjacent elements of
[Z0, ..., Tn_1], and then linearly interpolates between z,,—1 and ;. It allo-
cates an equally-sized chunk of the domain [0, 1] to each interpolating line
segment. If [Zg, ..., T,_1| € K, then K is a polygonal knot.

Let ¢ denote the function which takes elements of KUK and maps them
to this linear interpolation between their elements. ¢ has several useful
properties.

Theorem 2. For V = [Zg,...,Zn 1, W = [J0, ..., Jn1] € K U K and scalars
a,beR,

p(aV +bW) = ap(V) + bp(W).

Proof. Leti(t) = |nt| mod nand it (t) £ (|nt|+ 1) mod n. Fort € [0,1], we
compute:

@(aV 4+ bW)(t)
= (1 — (nt mod 1)) (aZi) + bFi)) + (nt mod 1)(aZ;7 ;) + biv ()
= (1 — (nt mod 1))aT;¢) + (nt mod 1)az;i ;) + (1 — (nt mod 1))bg;) + (nt mod 1)bg;+(p)
= a((1 — (nt mod 1))7;¢) + (nt mod 1)T373)) + b((1 — (nt mod 1))7;e) + (nt mod 1)F;t())
— ap(V)(1) + bo(W) (1),

O

Theorem 3. Forall V € KUK and W € K such that both V and W contain at
least 4 elements,

p(V)op(W)™!

is Lipschitz, where (V') o o(W) ™! is the composition of o(V') with the inverse of
p(W).
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Proof. LetV € KU Kand W € K be given. We will demonstrate that the
value of

[(p(V) 0 o(W) 1) (@) — (V) 0 o(W) " 1@l

Iz —

is bounded above for all Z, y in the image of (), i.e. the domain of p(V')o
(W)~

First, consider a restriction of (W) and ¢ (V') to the domain [0, 1), and
equip this domain with the interval metric. We will show that

le(V) () = (V)]
dr(t,t")

and

dr(t,t)
leW)(#) — e(W)(@)]|

are bounded above for all ¢,#' € [0,1) such that ¢t # ¢. To do so, we will
examine in turn values of ¢ and ¢’ that produce points on the same line
segment, on adjacent line segments, and on non-adjacent line segments.
This will demonstrate that the restriction of ¢(V') is Lipschitz and that the
inverse of the restriction of ¢ (W) is Lipschitz.

Let ny and ny be the number of vertices in V' and W, respectively. Let
7 and y be adjacent vertices in V. If t and ¢’ are in the closed interval that is
the preimage of the line segment between 7 and 7, we have

le(V) (@) = (M) _ 17 =17l

di(t.t) 1/ny

and since there are a finite number of pairs of adjacent vertices in V, these
values can be bounded above. If instead 7 and ¥ are adjacent vertices in W,
we have

leM)(&) — oW _ 17 - 7l

dr(t, 1) 1/nw -

Since W € K, we have T # 7, so

1/nw
1z =7
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is finite and well-defined. This establishes an upper bound on

d[(t, t/)
leW)(t) — (W)@l

for ¢, t' along the same line segment.

Now consider 7, , and z, where Z and ¥ are adjacent vertices, and so
are y and z. In other words, the line segment from 7 to 3 is adjacent to the
line segment from ¥ to z, and they share 7 as an endpoint.

Suppose t is in the closed interval between the preimage of Z and 7 and
t' is in the closed interval between the preimage of 7 and z. Let a € [0, 1]
be the fraction of the distance traversed from ¥y to Z to reach the image of
t, and let b € [0, 1] be the fraction of the distance traversed from 3 to z to
reach the image of t’. Then, we have

leV) () = (V)N _ o —9) +7 = bz —7) —¥ll

/ b
dl(tv 13 ) % + ny

_ lla(@ -9) bz -7l

= 1

i@ -9+ 0 -2

1/ny '
The coefficients %5 and ﬁb range over values in [0,1] that together
sum to 1. Therefore, we can rewrite the above as
N N b = N N _\ N -
lez@ D+ am@ -2 _ lld@ -9 +10-9F-2)|
1/ny 1/ny

for g € [0, 1]. This is a continuous function of ¢ over a compact domain, and
so the function must have a maximum and minimum value. Therefore,

le(V) () = (V)]
dr(t,t)

is bounded above for ¢, ¢ in the preimage of adjacent line segments.
If instead 7, 7, and Z are vertices in W, we have
leM)(®) — W) _ le@ —7) + (1 - a)(F - 2)|

dr(t, 1) 1/nw '

where

le@ =9+ (1 - -2
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has a minimum equal to zero if and only if there exists a ¢ € [0, 1] such that
97 -79) = (1-9(E-17)

This would violate the properties of I, and so the minimum value must be
greater than zero. This establishes an upper bound on

d[(t, t/)
le(W)(t) — (W)@l

for ¢, ¢’ along the preimages of adjacent line segments.

Lastly, we must consider the case where ¢ and ¢’ lie on the preimages
of non-adjacent line segments. For non-adjacent line segments in V, the
distance between the preimages of two vertices is bounded below by 1/ny.
Then, since the image of ¢ (V') is bounded, this establishes an upper bound
on

le(V) () = (V)]
dr(t,t)

for t,t’ in the preimages of non-adjacent line segments.

For non-adjacent line segments in W, we can make use of the fact that
non-overlapping line segments have a minimum distance between them.
Since there are a finite number of pairs of non-adjacent line segments in W
and no two overlap, there is an upper bound for

dr(t,t")
le(W)(E) — (W)@

when ¢, ¢ are in the preimages of non-adjacent line segments.

This completes our proof that our restricted version of ¢(V) is Lipschitz
and that the inverse of our restricted version of ¢(W) is Lipschitz. Since
the composition of two Lipschitz functions is itself Lipschitz and (V') o
©(W)~! is the same function regardless of whether (V) or ¢(W) have
their domains restricted,

p(V)op(W)™!
is Lipschitz. m

Theorem [3]is true even without the extra constraint that V and W con-
tain at least four elements, though the proof is more complicated. Both the-
orems 2| and 3| will be useful in demonstrating a correspondence between
polygonal knots and arrays of their vertices.
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2.1.2 Respecting polygonality

For a neural network N : R? — R? and array of vertices V € K, we say N
respects the polygonality of V if and only if

N(V)eK and Nop(V)~ p(N(V)).

Less formally, suppose a neural network with this property operated
on the vertices of a polygonal knot, and then line segments were drawn
between the resulting points in R?. This knot would be equivalent to the
image of the original polygonal knot when run through the neural network.

Theorem 4. Let N, M be any two neural networks that are both homeomor-
phisms. If M respects the polygonality of a set of vertices V € IC and N respects
the polygonality of M (V'), then their composition N o M respects the polygonality
of V.

Proof. Since N respects the polygonality of M (V'), we have N(M(V)) =
(N oM)(V) € K. Therefore, N o M satisfies the first property needed to
respect the polygonality of V.

Next, to show the second property, we begin by noting that since M
respects the polygonality of V,

Mop(V)~ o(M(V)).

Furthermore, because NV is a homeomorphism, it preserves the above equiv-
alence relation, and we have

NoMop(V)~Nop(M(V)).

Then, since N respects the polygonality of M (V'), we have
Nop(M(V)) ~ o(N(M(V))),

and applying the transitive property of the ~ relation to the above,
NoMop(V)~@(N(M(V))).

This can be rewritten as (VN o M) o p(V) ~ ¢((N o M)(V)). N o M thus
respects the polygonality of V. O

Theorem {4 demonstrates that if a neural network is composed of layers
that are each homeomorphisms and respect the polygonality of the input
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received from the layer that precedes them, and where the first layer re-
spects the polygonality of the original input, then the neural network as a
whole respects the polygonality of its input.

A neural network that both implements an ambient isotopy and re-
spects the polygonality of its input is able to perform “safe” operations
on a knot’s vertices. When an observer reconstructs a polygonal knot from
the neural network’s output, they can be sure that it will be equivalent to
the polygonal knot which corresponded to the original vertices. Or, more
formally:

Theorem 5. Let N be a neural network that both implements an ambient isotopy
and respects the polygonality of an array of vertices V' € K. Then,

p(N(V)) ~ (V).
Proof. As N implements an ambient isotopy,
Nogp(V)~p(V),
and since IV respects the polygonality of V,
Nog(V) ~ (N (V)).
Therefore, since ~ is an equivalence relation, we have

P(N(V)) ~ (V).
O

There are numerous applications for neural networks that both imple-
ment an ambient isotopy and respect the polygonality of their input. For
example, suppose such a neural network N acted on the vertices of a polyg-
onal knot V' € I, and the resulting polygonal knot ¢(N(V')) was visually
identifiable as the unknot. This would be a sufficient condition for the orig-
inal polygonal knot ¢(V'), no matter how visually complicated or tangled
it may appear, to be equivalent to the unknot as well.

Unfortunately, guaranteeing that each layer of a neural network re-
spects the polygonality of the input received from the previous layer is a
difficult task. There is a limited class of functions that respect the polygo-
nality of all possible sets of vertices, but the kinds of spatial deformations
they can perform is highly constrained.
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Theorem 6. If f : R3 — R3 is a positive affine transformation, then f both im-
plements an ambient isotopy and respects the polygonality of all arrays of vertices
Vek.

Proof. 1f f is a posjtive affine transformation, there must exist a 3 by 3 ma-
trix A and vector b € R3 such that for all z € R?,

4
F(@) = A7 +b,

where A has real entries and det(A) > 0.

First, we will demonstrate that f implements an ambient isotopy. Since
A has a positive determinant, f is both invertible and orientation-preserving.
Its inverse is the function f~! where

A
i@ =A"1z2- A"
Using a property of the determinant,

1

det(A™) = o)

>0,

meaning that f~! is also orientation-preserving. Furthermore, since all
bounded linear operators (sgch as A and A7) are continuous, the trans-
lations defined by ¥ ++ 7 + b and 7 + 7 — A~'b are continuous, and the
composition of two continuous functions is itself continuous, f and f~! are
both continuous functions. Therefore, f is an orientation-preserving home-
omorphism. Lastly, as every orientation-preserving homeomorphism is the
function h; for some ambient isotopy h, f must implement an ambient iso-
topy.

Now, let V = [z, ..., T,—1] € K be given. We will show that f respects
the polygonality of V. Recall that by the definition of ¢, for ¢ € [0, 1],

e(V)(t) = (1 — (nt mod 1)):@ + (nt mod 1)xi+(t),

where i(t) = |nt| mod n and i (t) = (|nt] + 1) mod n. Composing the
function ¢(V') with f thus yields

(fo@(V))(t) = f((1 = (nt mod 1))Z7) + (nt mod 1)T5()).
Since f is an affine function, and

(1 — (nt mod 1))Z;) + (nt mod 1)+ (5
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. s N N
is a convex combination of Z;;) and Z;+(;), we have

f((1 = (nt mod 1))Z5) + (nt mod 1))
=(1—(nt mod 1) f(xf(t)) + (nt mod 1)f(m)

Therefore,

(f o p(V))(t) = (1 — (nt mod 1)) f(Z;5)) + (nt mod 1) f(Zi+(5))

(
P(F(V))(®)
forall t € [0,1], so fo (V) = ¢(f(V)). Since knot equality implies

knot equivalence, we can also make the weaker statement that f o (V) ~
©(f(V)), and thus f respects the polygonality of V. O

If a positive affine function were used as a neural network layer, then
regardless of the input passed from the preceding layer, its polygonality
would be respected. Sadly, positive affine transformations are closed under
composition. As a result, a neural network created by stacking many such
layers would be no more powerful than a neural network with just one.

A superior approach would require finding neural network layers that
respect the polygonality of particular arrays of vertices, rather than all ar-
rays of vertices, and ensuring that they only ever act upon inputs whose
polygonality they respect.

2.2 Methods for Respecting Polygonality

Neural networks risk failing to respect polygonality when they try to pass
one line segment through another. To demonstrate this problem, we’ll use
an example that can be easily displayed in two dimensions.

Let (¢1,c2) € R? be some point in the unit circle. Consider a neural
network C : R? — R? that maps from cylindrical coordinates to rectangular
coordinates as follows:

C(r0,2) = {(T(COS(@) - c1) +c1,7r(sin(f) — c2) + c2,2) r<1
(rcos(6),rsin(0), z) r>1
C only acts on points inside a cylinder with radius 1 that stretches along
the z-axis. At each cross-section of the cylinder in the z, y-plane, it selects
(c1,c2) to be the new “center” for the points in that unit disk, and drags
them toward it.
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Figure 2.1: The dashed ring represents the unit circle. Lines from the unit
circle to the old center become lines between the unit circle and the new
center.

C implements an ambient isotopy. The family of functions
Ci(r,0,2z) =tC(r,0,2) + (1 —t)((rcos(f),rsin(), z))

is an ambient isotopy such that C; = C. As a result, C' will never cause
two parts of a knot to self-intersect as it continuously deforms R3. We can
observe this phenomenon for the following polygonal knot with 7 vertices:

y y

However, if it only acts on the vertices of the knot and we redraw the
edges at each time step ¢, two edges will pass through each other on the
way to their destination:
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Figure 2.2: The continuous deformation fails when the knot is approxi-
mated by a finite number of vertices.

In other words, there will exist a ¢ € [0, 1] such that C;(V') ¢ K.

This is not a sufficient condition to show ¢(C(V)) % C o (V). For ex-
ample, there may exist another ambient isotopy implemented by C where
a self-intersection does not occur for any ¢ € [0,1]. On the other hand,
e(C(V)) # C o p(V) implies that no continuous deformation will trans-
form (V') into ¢(C(V)), since C' implements an ambient isotopy and thus
Cop(V) ~ ¢(V). Avoiding intermediate self-intersections over the course
of a particular continuous deformation ensures that a neural network re-
spects the polygonality of its input.

Ideally, a neural network acting on a knot could identify when it risks
an intermediate self-intersection, and change its behavior to avoid that self-
intersection. There are two ways this can be accomplished. The first is to
modify the neural network. The second is to modify the input.

2.2.1 Modifying the neural network

Consider a neural network N and the identity function I : R® — R3. We
say that N pushes to an ambient isotopy if and only if

tN + (1— )1
is a homeomorphism for all ¢ € [0, 1].

Theorem 7. All neural networks that push to an ambient isotopy implement an
ambient isotopy. Not all neural networks that implement an ambient isotopy push
to an ambient isotopy.



Methods for Respecting Polygonality 15

Proof. Let N be a neural network that pushes to an ambient isotopy, and let
I denote the identity function. Then,

hy :=tN + (1 —t)I

creates a continuous family of homeomorphisms for ¢ € [0, 1] such that hy
is the identity function, which satisfies the definition of an ambient isotopy.
Since h; = N, the neural network N implements an ambient isotopy.

Now, for any ¢ € [0, 1] consider the neural network M; : R3 — R3 which
rotates its input 7t radians around the z-axis, so that

Mi(x,y, z) = (cos(mt)x — sin(nt)y, sin(nt)x + cos(wt)y, z).

Rotations are homeomorphisms. Since varying ¢ produces a continuous
family of homeomorphisms where M) is the identity, /M; implements an
ambient isotopy.

In order for M; to push to an ambient isotopy, tM; + (1 — t)I must be a
homeomorphism for all ¢ € [0, 1]. However, the function %Ml + %I is not.
For all (z,y, z) € R3,

1 1 1 1
(M + S1)(2,y, 2) = 5 (cos(m)z — sin(m)y, sin(m)x + cos(m)y, 2) + (2,7, 2)
1 1
= 5(_;5’ _yaz) + §(az,y,z)

= (07 07 z)l

and so %M 1+ %I is not invertible. Therefore, /; implements an ambient
isotopy but does not push to an ambient isotopy. O

Neural networks that push to an ambient isotopy can deform space
“part of the way,” stopping before they violate the polygonality of their
input. This can be demonstrated using the neural network C' from earlier.
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Figure 2.3: Cutting short the deformation prevents intermediate self-
intersections.

For every neural network that pushes to an ambient isotopy, and for
any desired fraction of the deformation it performs, there exists a neural
network that corresponds to that partial deformation. At least one such
neural network is capable of performing safe operations on the vertices of
a knot.

Lemma 1. Let N be a neural network that pushes to an ambient isotopy, and let
I denote the identity function. Then, for all m € [0, 1],

mN + (1 —m)I
pushes to an ambient isotopy.

Proof. Lett € [0,1] be given. We compute:

t(mN+Q—m)I)+ (1 —t) [ =tmN+t(l—m)I+(1—1t)]
=tmN + (t(1 —m) + (1 —¢))I
=tmN + (1 —tm)I.
Since tm € [0,1] and N pushes to an ambient isotopy, tmN + (1 — tm)I

is a homeomorphism. Therefore, mN + (1 — m)I pushes to an ambient
isotopy. ]

N

Lemma 2. Forall 7,7',7,7 € R3, there exists a unique t € [0, 1] such that

7' +(1-tz =ty +(1-1)y
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if and only if
Y Y
Ty A0 or T-7#0
and

0=@@-7)-@ -9+ -7 llz - Fll=

Proof. Before we begin our main proof, we will show that for all t € R, we
have

7+ (11—t =ty +(1-t)y
if and only if the polynomial
1@ =7 = @ -3 + 2@ -7) - @ -9 - |7 -7l + |17 - 3ll3

equals zero at that ¢.

Suppose the former condition holds. We will manipulate the equation
solely using invertible operations, so that we show both the backward and
forward direction of the proof at once. Subtracting ¢y’ + (1 — )y from both
sides, we have

0
t@ —7)+ 1 -1)@-7).

A vector in R? is equal to 0if and only if its dot product with itself is zero.
Therefore,

0= -7)+(1-)E-7) @ -7)+ 1 -1)Z 7))
=@ ~7) @' —y) +2a01-)@ ~7¥) @ -9+ (1 -1)*@-7) (@ -7
=t*|7" —¥'[3 +2t(1 - 1)@ ~7) - (@ —9) + (L - t)°||7 — gI5.

Breaking apart each coefficient, we have the following:

7' +(1-t)7 -ty — (1 -t)y

=1
2t(1 —t) = 2t — 2
(1-t)?=1-2t4t
Therefore, we can rearrange the right hand side of our previous equation
as

£l7 - 713

+2(@ —7) (@ -7) -2 -7) (-7
+ 17 — 93 — 2tl|Z - glI3 + 2117 — 73
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Grouping our terms, we thus have

a 20115 / _\f Y
0=t*(llz' ¥l - 2(2' - ¥) - (@ - %) + Iz — 7]3)
+2t((@' - 7) - @ —3) — |z - 7lI3)
+z 3l
which simplifies to
@' —3) — @ - 93 +2(@ ~7) - @ —7) — IZ ~gl3)t + |z - 7l3.
As a result, we know that there exists a unique ¢ € [0, 1] such that
'+ (1-t)z=ty+(1—t)y
if and only if the polynomial

1@ ~¥) - @ - 9lEe* +2(@ ~7) - @ —-7) — |z - gllDt + 12 - 7l3
has precisely one root in the interval [0, 1].

We can now proceed to the main body of our proof. For the forward di-
rection, assume for a contradiction that 7'~y = Z—7. Then, the polynomial
simplifies to

1@ —7) — @ -3 +2(@ ~7) - @ —7) 2 - gI3)t + |7 - 7l3

=@ -7 - @-PIE*+2@ -9 @ -7 - lIz -7t + Iz - 713

2

= [0[13#* + 2(|[7 - gl — [IZ — 7l3)t + |z — 7lI3

= ||z — 7l3-

We either have ||Z — 7||3 = 0 or |z — 9|3 # 0. If the former, then there are
infinite values of ¢ € [0, 1] such that the polynomial is equal to zero. If the

latter, then there are no values of t € [0, 1] such that the polynomial is equal
to zero. This contradicts our premise, so

—y #i-7

N
This furthermore implies that 2’ — 7’ and  — ¥ are not both equal to 0, and
so we have completed the first part of the forward direction. For the second
part, we note that it also implies that the term

1@ -7) - @ -9l3
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is not equal to zero, and so we can apply the quadratic formula to find the
roots t1, to of the polynomial:

2@ -9)-(@-9) —llz-713) £ VD

ti,ty = — —— Srem—
’ 2@ - 7)) — (-3

for discriminant D, where

D=4@-7) @ -7~z -7l15* - 4l@ -7) - @ -Dlzlz - 73
=4((@ -7 @-9))* — 7' -7zl - 7113)-

Dividing both the numerator and denominator of our roots by 2 gives us

Iz -9l - @ -7) @-9)+ V(@ -7) @
)—(Z

9)? — 7" - 71317 — 7li3

In order for there to exist a unique root in [0, 1], there must at least exist a
real root. In order for either of the roots to be real, however, we must have

(@ ~7)- G-~ ¥ ~FI3l7 ~ 718 >0,
but by the Cauchy-Schwarz inequality,
(@ -7)-@-9)* <7 -7l32 - vl5.
Therefore, if there indeed exists a unique root in [0, 1], we must have
(@ -7)-@-9) =17 - 73] - 7ll5-

We will use this fact to show that (7' — ') - (Z —y) + |7’ — ¥'||2/|Z — ¥||2 = 0.
For a contradiction, suppose that

@ —79)- (@ -9 + 7' =720z —7l2 #0,
and thus
—\/ A/ R A A/ _\/ N A
~@ -7) @ -9 #1727 ll2l7 — yll2-

It could not then be the case that either 7’ — 3’ or  — 7 is the zero vector.
However, since

(@ —9) @ 9)) = |7 — 71312 - 913,
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we must instead have

(@ =7)- (@ -7) = 17 = ¥ll2/Z - 7llo-
Plugging this result into our equation for the roots, we have
7 -3l - @ -7)-@-7)
1@ —3) — @ -9)l3

_ Z =3l = 117" = ll=l1Z — 3l
1@ -7 - @ -3

We will obtain a second expression for the roots as follows:

11 =12 =

| — gll3 — 12" — 7'll2l|Z — 7l
1@ —7) - @ -9)I3

_ Iz —9l3 — 202" — g'll2llZ — glla + 12" — 7113 + (12 — 7'llallZ — gl — 2" — '[I3)

t1 =12 =

1@ -7) - @ -3
_ Iz —gli —2@ —7) @ =9 + 17 — 713+ (17’ — 7'll2]17 — Fll2 — 17 = 7'[I3)
1@ -7 - @ -P)I3
1@ =) = @ =95+ 17 = Fll2l1Z — 3ll2 = 17 = 7'[13)

1@ —7) - ( sl
_ 1 =Tz — glle — 7" — 7 'II3
(@' =) — (@ -9)l3
_ 1 =71 =17 - Flall7 - 7ll2
II(f’ ~7) - @-9)3
From these two expressions, it is clear that if the root is to be contained in
[0, 1], we must have both

| — gll3 — 112" — 7'll2[|Z — Fll2

1@ -7) - @ -3

>0

and

17 =113 = 17— 7ll=21Z — 72

1@ -79)-@-9l5  —

Now, recall that since neither 2’ — 7' nor  — 7 are the zero vector, their
norms are both strictly greater than 0. Additionally, since we have already
shownz' — 7y #7 —7,

1@ -7) - @ -Dl3
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must be strictly greater than 0 as well. Therefore, we can divide both the
numerator and denominator of our first inequality by ||Z — 7| to get

17 = ¥ll2 — 12" — 7'll2

1@ —7) — @ = DIIE/17 -l =0

where
1@ =7 — @ = 9)3/17 — 32
is a positive real number. Therefore, we must have
|17 = 3ll2 — 17" = 7'll2 = 0.
Repeating the above steps for the second inequality, we obtain

12" = 7'll2 — 17 — Fll2 >0

1@ -7) - @ -/ -7~

where
1@ 7)) — @ =D/ 17 - 7ll2
is a positive real number, and so
17" = 7'll2 = 17 = gll2 > 0.

Since we have both |7/ — 7/|lz < |2 — |2 and ||/ — 7|l > ||Z — 7|2, we
must have

17 = 7'll2 = [z — 7l
However, this violates one of our earlier assumptions: that
1@ ~9) - @ -9)lI3
is strictly greater than 0. To show this, we compute the following:
1@ ~9)— @ -9l =17 -9l -2 ~9) - @ —9) + |2~ 73

=z - 7l3 - 2z’ = ¥ ll2llZ — 7l + |7 - 713

= (l7 = 7'll2 - |7 - 7[2)
=0.
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This is a contradiction, and so
@ —7) @ -9+ 7' -7z - gl2 = 0.

This completes the forward direction of the proof.
For the backwards direction, assume both that either

3§ 40 or F—7£0
and
0= 7))@ -9+ 7" = 7ll2/l7 — 7l
We will show that the polynomial
1@ 7)) - @ -P3* +2(@ - 7) - @ -9 — |z - 7l3)t + |7 - 73

possesses a unique root in the interval [0, 1].
First, we can rewrite the first coefficient of our polynomial as follows:

1@ 7)) - @ -9l =7 - ¥l - 2" -7 - (
= |z’ = 3'lI3 + 2l|z" — 7'[|2]
= (2" = ¥'ll2 + |12 — 7l2)*.

T —7)+ T -7l
2 —7l2+ |2 -3

Since either
_\/ _\/ 2 R A 2
T -y #0 or T—7#0,
we know that

(7 = 7'll2 + 17 = 7112)*

must be strictly greater than 0, and so we can use the quadratic formula to
find any roots of our polynomial. Using similar computations to before, we
find that

Iz -3l - (@ -7) - @ -7 £ V0
1@ —7) - @ -9)lI3
| — glI3 + 112" — 7'll2[|Z — 72
T -2 -y @ - )+H$—§II§
Iz — glI3 + 1|12’ — 7'll2[|7 — Fll2
T =vB+2 - 707 — 7l + 7 — 713
_ Iz =gl + 17" = 7ll20Z — 3l
(7" = 7'll2 + [|Z - Fll2)?

t =1ty =
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Since the denominator is a positive real number and the numerator is non-
negative, the root must be greater than or equal to 0. Furthermore, by rear-
ranging the expression, we find

_ Iz =gl3 + 12" = ¥ll2l1Z — 5l
(7" =72 + 17 — 7ll2)?
_ Nz =73+ 2017 — 212 — gll2 + 17 — 7115 — 12" = 713 — 17" — 7'll2[1Z — 72
(7" =72 + 17 — 7ll2)?
_ U2 =gl + 112 = gll2)® — 12 = 713 — 2 — 7l — 72
(7 = 7'll2 + |12 — 7ll2)?
- H2+ 17" = ¥'ll2117 — Fll2
(Ilaj ¥l + 17 -7l2)*>

Therefore, the root must be less than or equal to 1. Combining these re-
sults, we know that there exists a unique root for the polynomial and it is
contained within the interval [0, 1].

This completes the backwards direction of the proof. O

Theorem 8. Let N be a neural network that pushes to an ambient isotopy, let V'
be an array of vertices in K, and let I denote the identity function. Then, there
exists a non-zero ty.y € (0, 1] such that for all a € [0, tyax),

aN(V)+(1—a)V
is an element of K and
aN + (1 —a)l
implements an ambient isotopy.

Proof. First, by lemma (1} that N pushes to an ambient isotopy implies that
for all m € [0,1], mN + (1 — m)I pushes to an ambient isotopy. Then, by
theorem [} mN + (1 — m)I implements an ambient isotopy.

Next, theorem 2 tells us that

p((mN + (1 =m)I)(V)) = p(mN(V) + (1 =m)V)
=mp(N(V)) + (1 =m)e(V).

Varying m should produce a continuous family of polygonal knots so long
as mN(V) + (1 —m)V € K. Therefore, we should expect ¢((mN + (1 —
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m)I)(V)) to have at least one self-intersection (and thus mN (V) + (1 —
m)V ¢ K) if there exists ¢,t' € [0,1) where ¢ # ¢’ such that

mp(N(V))(t) + (1 = m)e(V)(t) = me(N(V)(#) + (1 = m)e(V)(t).

By lemma [2} there exists an m such that this equation holds for a particular
t and ¢’ if and only if

P(N(V)(#) = o(N(V))(t) #0 or o(V)(t) —o(V)(t) #0

and

0 =(p(N(V))(®) = o(N(V))(D)) - (9(V)(t) = p(V)(1)
+HeN V) () = o(NV)(E)l2lle (V) (E) = (V) ()]l

The first of these two conditions is automatically satisfied, since the fact
that ¢ # t' implies (V)(t) # ¢(V)(t'). Though the second condition will
not be satisfied by all ¢,#/, we possess a formula that returns the value of
m in the case where the second condition is satisfied. Therefore, any lower
bound on that formula will also lower bound the set of all m where both
the first and second condition are satisfied.

We derived in the proof of lemma 2] that if the second condition is satis-
tied, the self-intersection occurs for a value of m equal to

le(V)(®) = (V)3 + (N (V))(E) — (N (V) () ll2llp (V) (E) — (V) (t)]]2
(le(N(VN(E) = o(NV) )2 + le (V) () = o(V)(#)]]2) ’

We can simplify this expression further. Since p(V)(t) # ¢(V)(t'), the value
of (V) (t) — ¢(V)(t')||3 must be greater than 0. Dividing both the numer-
ator and denominator of our formula for m, we have

4 LeV e (N @l
ERORIGGIP
N0 (N | 1y2
rmoemon +Y
1
| 0N @
[EIOR= WGP

m =

By theorem 3] we know that

P(N(V))op(V)™
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is Lipschitz. There must therefore exist some constant M/ such that

le(N(V)(t) = (N (V) () l2
le(V)(#) = e(V)(#)]]2

for all o(V')(t) # ¢(V)(t'). This means that

<M

1
N

is a lower bound on the set of all values m € [0, 1] where the image of the
function

p(mN (V) + (1 —m)V)

has self-intersections, and thus would not be a polygonal knot. Note that
tmax 15 strictly greater than 0. Furthermore, since it is less than all values
where a self-intersection might occur, all values of a € [0,#max) Will also
avoid a self-intersection. ]

Recall from theorem [5] that a neural network N which both respects the
polygonality of its input V' € K and implements an ambient isotopy is able
to perform “safe” operations, i.e. p(N(V)) ~ ¢(V). Theorem [§| tells us
that neural networks which push to an ambient isotopy and are modified
according to the procedure described above possess this property. This is
a powerful sufficient condition. The downside to this approach, however,
is that it requires a differentiable formula for ¢max. Otherwise, a neural
network that uses this method will not be able to train via gradient descent.

The advantage to this method is that it has an analogue in how a hu-
man might attempt to untangle a knotted piece of string. A person will try
to pull different parts of the string to new locations, but stop once they re-
alize that two overlapping parts of the string are being pulled in opposite
directions. The above method allows a neural network to identify when it’s
making a similar error.

Finding a differentiable formula for ¢max is beyond the scope of this pa-
per. We describe this method here as a potential avenue for future research.

2.2.2 Modifying the input

Suppose that we select a finite number of points in the image of a knot
K :[0,1] — R3, and construct an inscribed polygonal approximation to K
by drawing line segments between each point and its successor.
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Figure 2.4: Constructing an inscribed polygonal approximation to a knot.

Intuitively, as the number of vertices in the polygonal approximation
grows larger, it will better adhere to K’s shape. By placing some restric-
tions on the properties of K, we can demonstrate that a sufficiently precise
polygonal approximation will be ambient isotopic to the original knot.

The literature has discovered several well-behaved knot varieties which
are ambient isotopic to an inscribed polygonal approximation. Li and Peters[2]
prove this for knots in differentiability class C?. They show that for any
such knot C, for any sequence of inscribed piecewise linear curves {L;}{°
that converges pointwise to C and uniformly converges to C in total curva-
ture, a positive integer N can be found such that for all ¢« > N, L; is ambi-
ent isotopic to C. Additionally, they show that such a sequence of inscribed
piecewise linear curves exists.

A classic theorem from Milnor[3] establishes a similar result for knots
with finite total curvature. All such knots are ambient isotopic to an in-
scribed polygonal curve, and thus tame. Additionally, Sullivan[6] finds
that a rectifiable curve has finite total curvature if and only if its unit tan-
gent vector is of bounded variation. Therefore, a neural network could be
made to respect polygonality if it mapped polygonal knots to rectifiable
curves with this property.

Unfortunately, these conditions are more suited to characterizing indi-
vidual knots than every possible knot that a neural network layer might re-
turn. It would be ideal if there were conditions that held for a broad class of
neural networks, which guarantee that they will produce knots which are
ambient isotopic to sufficiently fine-grained inscribed polygonal approx-
imations. There is a correspondence between such neural networks and
whether they respect polygonality.

Let N be a neural network that implements an ambient isotopy and let
V be a set of vertices in . Then, ¢(N(V)) can be viewed as an inscribed
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polygonal approximation to NV o p(V').

N) pNI))

Figure 2.5: N warps space, then ¢ linearly interpolates between elements
of N(V). p(N(V)) is inscribed in N o (V).

Noo(V)

Figure 2.6: Reversing the order in which ¢ and N are applied will produce
N o ¢(V), a visually different knot.
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o)

NeooV) ~ o(NI))

Figure 2.7: For a sufficiently precise approximation, this diagram com-
mutes and N o (V) ~ o(N(V)).

However, if this polygonal approximation is inexact, then N o p(V') 7%
@(N(V)). In other words, N will not respect the polygonality of V. We
therefore need conditions for when a sufficiently fine-grained approxima-
tion to N o ¢(V) can be obtained by introducing additional vertices to
SN (V)).

First, we will introduce an operation on arrays that increases the num-
ber of vertices they contain, without distorting the polygonal knot they rep-
resent. For k € Z1, let the function A, : K UK — K U K be defined such

that
N . 0,_. 0_. k-1 k-—1__
A ([0, ..oy Tn—1]) = [(1 — E)xo + Em, ,(1— k: )To z 71,
0. . 0_. k-1, . k—1__
(1- E)Sﬂl + El"z, (1 — i )T1 A T2,
0 . 0 . k—1 . k—1
7(1 - %):En*l + E:I"Oa ) (1 - k ):L‘nfl k I'O]

Intuitively, Ay, places k£ — 1 evenly spaced new vertices between any two
adjacent vertices in the original array. The function possesses the important
property that it does not modify linear interpolations constructed using ¢.
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Theorem 9. For V € KUK,

p(AR(V)) = ¢(V)
forall k € Z".
Proof. For convenience, we will write out the elements of V as [z, ..., Tr,—1]
and the elements of A(V') as (40, ..., nk—1]- Note that as V is of length n,

Ay (V) will be of length nk.
Givent € [0,1],

P(Ap(V))(t) = (1 — (nkt mod 1))7i) + (nkt mod 1)+ ()

fori(t) = |nkt| mod nk and it (t) = (|nkt] + 1) mod nk. We will show that
this is equal to ¢(V')(t) for all ¢t € [0, 1].
Let t be given. Then, there exists a unique ¢ € Nand a € [0, 1) such that

qg+a
mant

t:

We thus can rewrite i(t) and it (¢) as

i(t) = LnkHTaJ mod nk

= |kq + ka] mod nk
= (kq + |ka]) mod nk

and

it (t)

J + 1) mod nk

[nk
|kq + k:aJ + 1) mod nk

(
= (
= (kq + |ka] + 1) mod nk.

This decomposes i(t) and " (¢) into two separate components: the index
of the start of an interpolated interval (i.e. kq) and the index within the
interpolated interval (i.e. |ka] and |ka| + 1). Let i’ denote ¢ mod n, and let
i™" denote (¢ + 1) mod n. By our construction of A, we thus have

. k k .
yz(t) = (1 LkaJ ).%l/ + LkaJ L+
and
A ka|+1, . ka] +1 .
v = (1= ij)xi’ + LJkﬂ?ﬁf'
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Furthermore, we can rewrite nkt mod 1 as

nkt mod 1 = nkm mod 1
n

= (kq + ka) mod 1

= ka mod 1.
Therefore,
(1 — (nkt mod 1))7;) = (1 — (ka mod 1))((1 — L kaj )Ty L kaJ Ti+r)
and
. k IR k 1
(nkt mod 1)77735 = (ka mod 1)((1 — WJk*)xl, ! “Jk+ =)

_ Clka) 1. lke] 1, .
= (ka mod 1)((1 - k)le + ( ot k)a:ﬁ/)
— (hamod 1)((1 — )z o Wl oy T

Summing the above expressions to find ¢(A(V))(t), we have

O(Ae(V))(t) = (1 — (nkt mod 1))7;z) + (nkt mod 1)@
ol el
k ! k
|ka] + (kamod 1),
=(1- 2 )Ty 2
= (1 - (amod 1))y + (a mod 1)z;7
= (

(

—\
,L+/ — Xy

T+ + (kamod 1) ’
=4 |ka] + (ka mod 1)

T+

:(1

— ((nt — q) mod 1))y + ((nt — q) mod 1)z;7
1 — (nt mod 1))xy + (nt mod 1)z;7

p(V)().

Corollary 9.1. ForanyV € Kand W € K,
A (V)e K and A (W) € K.

Proof. This follows directly from theorem 9} If ¢ (A (V) = (V) and ¢(V)
is a polygonal knot, then ¢(A;(V)) is a polygonal knot and A, (V) € K.
Similarly, if p(Ax(W)) = (W) and ¢(W) is not a polygonal knot, then
(A (W)) is not a polygonal knot and A (V) € K. O
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Corollary 9.2. For V' € K, if a neural network N respects the polygonality of
Ay (V), then

p(N(A(V))) ~ N op(V).
If N also implements an ambient isotopy, then

P(N(Ar(V))) ~ (V).

Proof. From theorem [0} ¢(Ax(V)) = ¢(V), which implies ¢(Ax(V)) ~
(V). Since N respects the polygonality of A (V'), we also have (N (Ax(V))) ~
N o ¢p(Ag(V)). Therefore, as ~ is an equivalence relation,

P(N(AR(V))) ~ N op(V).

Next, assuming that N implements an ambient isotopy, ¢(V) ~ N o (V).
Thus

P(N(Ar(V))) ~ (V).
O

As with the method described in section proving conditions for
when applying Ay, to sets of vertices forces a neural network to respect
their polygonality for sufficiently large values of k is beyond the scope of
this paper.

Presuming, however, that a neural network meets the preconditions
of corollary increasing the number of vertices has definite advantages
over trying to detect intermediate self-intersections. It is simpler to imple-
ment, and doesn’t restrict the flexibility of the neural network.

Brute force solutions also have their downsides, however. The disad-
vantages of this approach are two-fold. First, increasing the number of
inputs to a neural network has computational costs. It takes longer to train
a neural network to untangle a knot with more vertices. Second, it is not
clear how many vertices are required. Even if a sufficiently large set of ver-
tices will prevent illegal manipulations of the underlying knot, that number
will change as the neural network fine-tunes its parameters. This can prove
dangerous for any fixed number of vertices, no matter how large.

Neither of the two methods described here are without drawbacks. The
best way to avoid polygonality violations is to avoid situations where they
might occur to begin with. This can be achieved by altering a neural net-
work’s loss function.
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2.3 Knot Energy as Loss Function

In order for a neural network to determine which of its parameter con-
figurations most successfully untangles an input knot, we require a loss
function that represents how “tangled” the output is. Geometric knot theo-
rists have developed functionals on the space of knots, called knot energies,
which capture this property.

The Mobius energy is a particularly common knot energy. For a knot
K :[0,1] — R? the Mobius energy functional is defined by the map

1 1 1 1 . .
ke f <||K<u> “KOP  DalK(w), K<v>>2> I (w)ldo de,

where Dqo (K (u), K (v)) is the minimum distance between K (u) and K (v)
along the curve defined by the image of K.

Since neural networks act on a discrete number of inputs, we will make
use of a discretized version of the Mobius energy. For a polygonal knot
K with vertex set V' € K, the map defined by the discrete Mdbius energy
functional is

1 1
Koo Y ( _ )2) i — 241 mod nlll25 — 541 mod nll

l|z; — xjHQ Darc(i, 7

where n is the number of vertices in V. For polygonal knots with few ver-
tices, a better-behaved version of the discrete Mobius energy can be cal-
culated by replacing ||z; — Zi11 mod n|| and ||z; — ;41 mod »| in the above
formula with

sz — Ti+1 mod n” + ||$z — T4—1 mod n”

2
and
ij — ZL5+1 mod n” + ij — Lj—1 mod n”
2 7
respectively.

The advantage of the discrete Mobius energy is that the continuous
Mobius energy of a smooth knot will correspond closely to the discrete
Mobius energy of a sufficiently similar inscribed polygonal knot.[4] Fur-
thermore, the discrete Mobius energy is easily differentiable with respect
to the vertices of a polygonal knot, which makes it an ideal candidate for a
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loss function. Other discrete knot energies which do not possess this prop-
erty, such as the minimum distance energy[5], are less suited for training a
neural network via gradient descent.

Additionally, we can modify our loss function so that the neural net-
work actively avoids situations where it might violate the polygonality
of its input. Since these situations most often arise when the edges of a
polygonal knot are unequally sized, we construct an index of how poorly a
polygonal knot’s edge lengths conform to the edge lengths of an ideal knot:

= 1 1 sz — ZLi+1 mod nH 2
exp Z oo L/n

=0

L denotes the desired arclength of our knot.

Multiplying this index by the discrete Mobius energy produces a loss
function that is both sensitive to polygonality violations and the primary
objective of untangling the knot.

2.4 Pitfalls of Conventional Layers

Traditionally, the layers of a neural network are a composition of three func-
tions: a linear mapping, a translation, and an activation function. First, the
layer runs its input through a matrix with real entries. Next, it adds a vector
with real entries—called the bias—to the output of the linear transformation.
Finally, it applies a continuous function pointwise to each entry of the re-
sulting vector, which is called an activation function.

As a result, we can represent a conventional neural network layer L :
R3 — R? acting on an input 7 € R? as

L@) = f(AZ+D)

for 3 by 3 matrix A, bias term ZJ) € R?, and activation function f : R — R.
So long as the matrix A has a positive dJeterminant, the map without
the activation function defined by z — Az + b both implements an ambient
isotopy and respects the polygonality of all arrays of vertices. Including the
activation function in this map, however, poses some difficulties. First, the
activation function may not respect the polygonality of its input. Second,
many common activation functions are not bijective, and therefore cannot
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be homeomorphisms from R to R. Only bijective neural network opera-
tions can implement ambient isotopies.

Fortunately, this second difficulty can be circumvented. If f is strictly
monotonically increasing-as is the case for many common activation functions—
then there is a way to transform the activation function so that it imple-
ments an ambient isotopy.

Lemma 3. Let I : R — R denote the identity function, and let m be any real
number in [0, 1). If a continuous function f : R — R is strictly monotonically
increasing, then the function mf + (1 —m)I is a homeomorphism.

Proof. For mf + (1 — m)I to be a homeomorphism, it must be a bijective
continuous function with a continuous inverse.

First, since mf + (1 — m)I is a convex combination of two continuous
functions, it is itself continuous.

Next, we will show that mf + (1 — m)I is injective. Let z,y € R be
given such that x < y. f preserves the < relation because it is strictly
monotonically increasing, so we have

flx) < f(y).

Multiplying by the non-negative value of m on both sides, this becomes

mf(x) < mf(y).

Since m can equal 0, this replaces the strict inequality with a non-strict in-
equality. However, as (1—m) > 0, we can repeat the process for the relation
x < y while retaining the strict inequality:

(1-m)z < (1-m)y
Adding the two inequalities together, we have
mf(z) + (1 —m)z <mf(y) + (1 —m)y,

and so m f +(1—m)I is strictly monotonically increasing. All strictly mono-
tonically increasing functions are injective.

To show that m f+(1—m)I is surjective, first consider that by a property

of monotonically increasing functions,

lim (mf(z)) and

li
T—00 r—r

m_(mf(x))
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always exist. lim,_,o(mf(x)) is either a finite real number or +oo, while
lim, o (mf(x)) is either a finite real number or —oc. Meanwhile, since
(1—=m) >0,

lim (1 —m)x) =400 and lim ((1 —m)z) = —o0,

T—00 T—r—00

and so regardless of the asymptotic values of m f(x),
xlbn;o((mf + (1 —=m)I)(z)) =+oc0 and mli}lzloo((mf + (1 —m)I)(x)) = —o0.

Recall that mf + (1 —m)I is a continuous function. The intermediate value
theorem thus applies and for any y € R there will exist some = € R such
that (mf + (1 —m)I)(z) =y. mf + (1 — m)I is therefore a bijection.
Lastly, the inverse of a strictly monotonically increasing function will
always be continuous.[1] This is the final property needed to show that
mf + (1 —m)I is a homeomorphism. O

Note also that mf + (1 — m)I is continuous in m. Using lemma 3| we
can implement an ambient isotopy using a modified activation function:

Theorem 10. Let I : R — R denote the identity function, and let m be any real
number in [0,1). If a continuous function f : R — R is strictly monotonically
increasing, then applying the function mf 4 (1 — m)I pointwise to elements of
R3 implements an ambient isotopy.

Proof. From lemmal3| af + (1 — a)I is a homeomorphism for all @ € [0, 1).
Since m € [0,1), we can make the weaker claim that af + (1 — a)/l is a
homeomorphism for all a € [0, m].

Applying a homeomorphism pointwise is itself a homeomorphism. We
set a = mt for t € [0,1] and, using the fact that af + (1 — a)! is continuous
in a, this produces an ambient isotopy h : R3 x [0,1] — R3 where

hi(z) = mtf(z) + (1 — mt)z.
Since h1 = mf+(1—m)I, this demonstrates that m f + (1 —m)I implements
an ambient isotopy. O
Corollary 10.1. Applying m f+(1—m)I pointwise pushes to an ambient isotopy.
Proof. Rearranging the ambient isotopy constructed in theorem[I10, we have
hi(@) = mtf(@) + (1 - mt)z
=mtf(Z)+ (1 —m)tz + (1 — )z
(7) + (1 —=m)z) + (1 - t)z.

=t(mf
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This is a linear interpolation between m f + (1 — m)I and I, which implies
mf + (1 —m)I pushes to an ambient isotopy. O

Since m can be made as close to 1 as desired, many common activation
functions (such as the sigmoid, hyperbolic tangent, or ReLU functions) can
be easily modified to implement ambient isotopies without heavily distort-
ing their behavior. In fact, some activation functions (e.g. leaky ReLU)
already implement ambient isotopies.

In addition, corollary allows us to modify strictly increasing acti-
vation functions so that they respect the polygonality of their input, using
the method described in section 2.2.1]

Unfortunately, the other traits of conventional neural networks prevent
them from untying knots effectively. Training dense layers while keeping
the determinant of their matrix transformations positive requires signifi-
cant changes to the training process. Additionally, most activation func-
tions were not built to exploit the particular structure of knots. In practice,
they are unable to learn operations that could untangle a complicated set
of vertices.

We were able to outperform conventional layers by creating customized
alternatives that take advantage of a typical knot’s structure. Stacked to-
gether, they avoid many of the difficulties with traditional neural networks
and yield superior results.
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Custom Layers

We experimented with several different custom neural network layers. All
implemented ambient isotopies. Some were significantly more effective
than others at untangling knots. In addition, composing several layers of
one type could often mimic the functionality of a single layer of a different
type.

An overriding design philosophy behind the custom layers was to make
sure that at least one configuration of their trainable parameters would
cause them to become the identity function. As a result, if it would be lo-
cally optimal for a custom layer to stop acting upon the knot entirely (e.g.
because it is causing the knot to become more twisted than it began), the
custom layer can “drop out” of the neural network. Custom layers are thus
able to recognize when they do more harm than good, and act accordingly.

Additionally, this design philosophy allows us to more easily demon-
strate that the custom layers implement ambient isotopies. If

1. The map implemented by a custom layer is a continuous function of
its parameters,

2. There exists a continuous curve in the custom layer’s parameter space
which starts at its current parameters and ends at a parameter config-
uration that would yield the identity function, and

3. All parameter configurations along the curve yield homeomorphisms,

then the layer itself, at its current parameters, implements an ambient iso-
topy.

For a layer with n parameters that can take on values in some interval
of the real numbers, proving that a layer implements an ambient isotopy
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becomes even simpler. Suppose a layer has a parameter space of the form
S1 X ... x Sy, where each S; is an interval of the real numbers. Then, for any
two parameter configurations, there will exist a continuous curve between
them in the parameter space. Therefore, if at least one parameter configu-
ration yields the identity function, property (2) will always hold, regardless
of the layer’s current parameters.

We can thus produce a simplified sufficient set of conditions for a cus-
tom layer to implement an ambient isotopy. If

1. The map implemented by a custom layer is a continuous function of
its parameters,

2. The custom layer has n parameters, and a parameter space of the form
Sy % ... x S, where each S; is an interval of real numbers,

3. All possible parameter configurations of the custom layer yield home-
omorphisms, and

4. There exists a parameter configuration that yields the identity func-
tion,

then the custom layer, at all possible parameter configurations, implements
an ambient isotopy. Each custom layer investigated in this section satisfies
all of these 4 properties.

3.1 TwistLayer
This layer mimics the first Reidemeister move. It twists or untwists a seg-

ment of the knot in a direction of its choice (i.e. either clockwise or counter-
clockwise).

Figure 3.1: Reidemeister 1
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The TwistLayer begins by identifying a line in 3D space, ideally radial
to a loop in the knot:

It then applies a rotation along the axis defined by this line. The angle of
rotation, however, isn’t uniform across the entire space. Locations further
in the direction of the line are rotated more, while locations in the opposite
direction are rotated less.

The result is that the TwistLayer applies a “vortex-like” transforma-
tion to the data, performing scarcely any rotation near the base of a twist in
the knot, and much more intensive rotation inside the looped region. If the
line of rotation is placed correctly, this successfully duplicates the function-
ality of the first Reidemeister move.
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One trainable parameter r controls the rate and direction of the twist,
while another trainable parameter m € [0,1) controls the maximal degree
of rotation applied in the limit to an input as it asymptotically moves in the
direction of the axis. If m = 0, then the TwistLayer becomes the identity
function.

In order to ensure that the TwistLayer pushes to an ambient isotopy,
the maximal degree of rotation as m approaches 1 is capped at 7 radians.
As demonstrated in theorem [/} a rotation of 7 radians does not push to an
ambient isotopy.

Efficacy

The TwistLayer is able to remove twists, though newly untwisted areas
are often jagged and in need of smoothing afterwards.

Additionally, the TwistLayer sometimes has trouble identifying lo-
cations at which to perform twists. Neural networks constructed with
TwistLayers can become stuck in local minima, in which the parameters
for the axis of rotation are unable to move into the correct position to undo
a twist in the knot without first moving through a region that causes the
knot to become more twisted than it started. This is a problem that exists
(to varying degrees) with all custom layers that rely upon specifying some
line in space before performing their operations. It will be discussed more
comprehensively in the GravityLayer section.

3.2 GravityLayer

The GravityLayer pushes space either away or toward a line. It’s in-
tended to help deformed segments of a knot become more curved.
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The layer begins by identifying a point in space, called a planet. It then
finds a line that intersects the planet, which we’ll refer to as the planetary
line.

The layer then computes the distance between each vertex in the knot
and the planet. Vertices closer to the planet will be shifted more dramati-
cally, while far away locations will remain relatively undisturbed. At the
same time, the layer computes the line segment of shortest distance be-
tween each vertex and the planetary line. Vertices will be pulled or pushed
in the direction of this line of shortest distance.
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Figure 3.2: The length of the dashed grey lines are computed, and the dot-
ted grey lines are stored as vectors.

This makes the name “GravityLayer” slightly misleading—while the
gravitational (or inversely gravitational) force each vertex experiences is
dependent on their distance from the planet, they are pulled toward (or
pushed away from) the planetary line rather than the planet itself.

The formula for the distance moved by each vertex in the direction of
the planetary line is

1
+ =S exp(—rxd;)”’

s

2
L] (1 —
Iz - -

where i is the shortest vector from vertex i to the planetary line, d; is the
distance from vertex i to the planet, and s, € (0, 00) are trainable param-
eters. Intuitively, r corresponds to how fast the gravitational effect dis-
appears as one moves farther from the planet, and s corresponds to how
strong the gravitational effect is overall. A value of s € (0,1) causes ver-
tices to move away from the planetary line, while a value of s € (1,00)
causes vertices to move toward the planetary line. More extreme values of
s (i.e. s >> 1ors << 1) cause a stronger effect. When s = 0, no force is
applied.

Efficacy

The GravityLayer is the most powerful of the custom layers we tested.
However, local modifications to its weights often fail to approach a min-
imum in the loss function unless the weights are initialized to positions
already close to a minimum.

Consider the following example. Suppose the loss function of a knot
would be decreased if strands A and A" were to be pushed away from lo-
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cation B by a GravityLayer, but the planet P and the planetary line L are
located in between the two strands:

>
rl-.

A)’

-

S i

Suppose the GravityLayer has a value of s contained in (0,1). The
planetary line is thus pushing strand A in a direction that increases the
value of the loss function, but pushes A" in a direction that decreases the
value of the loss function. Modifying the values of s or » would therefore
cause the loss function to increase or decrease further in equal measure.
Gradient descent will leave those two parameters unchanged.

Ideally, in order to minimize the loss function, we would place the

planet and planetary line on the opposite side of strand A, at positions P*
and L*:

A L*
LA A’
S P
Y

Figure 3.3: The optimal location for P and L.

However, since gradient descent only allows for local parameter changes,
the planetary line must first pass through (or go around) strand A to get to
this optimal location. Unfortunately, the closer the planetary line gets to

strand A, the more it pushes A toward point B, and the less it pushes A’
away from point B. This increases the loss.
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Figure 3.4: The position of L, while closer to L*, results in a higher loss.

The GravityLayer would achieve a lower loss if it instead moved the
planetary line toward A’, which is farther away from its optimal location.
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Figure 3.5: The position of L obtains a lower loss, but is farther away from
L*.

As a result, gradient descent moves the planet and planetary line away
from their optimal locations.

In practice, this problem can be cirumvented with using several stacked
GravityLayers, where each layer’s parameters are initialized randomly.
Some of the layers will end up with parameters close to their optimal val-
ues, at which point gradient descent can successfully guide the planetary
line to the right spot. Meanwhile, though the layers whose parameters
are initialized to values far away from an optimum might fail to help de-
crease the loss function, they will not increase it. In the worst case sce-
nario, they can update the value of their s parameters to be equal to 1.
A GravityLayer with s = 1 is the identity function, and so adding addi-
tional GravityLayers does not cause a knot to become more tangled than
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it started.

3.3 SmoothLayer

This layer performs a “soft” projection of the knot onto the unit sphere
around a specific point ¢. The coordinates of this point are trainable pa-
rameters.
A projection onto the unit sphere around ¢ would transform each vertex
7; as follows:
Lo bt

Vi = <oy
|7i — ¢

2

+c

This map has a discontinuity at 7; = ¢, which prevents it from qualify-
ing as a homeomorphism.

Unlike a normal projection, however, the SmoothLayer avoids this
discontinuity by tapering off the projection as 7; approaches ¢. The trans-
formation implemented by the SmoothLayer is as follows:

tanh(s||v; —¢[))

i =2l +€

v — (m

(@ —¢)+ (1 -m)(vi —¢) +¢

¢ is an arbitrarily small positive constant[]] The parameter m € [0, 1) de-
termines the “strength” of the transformation, and linearly interpolates be-
tween the layer’s usual output and its input. As m — 0, the SmoothLayer
becomes the identity functionE]

The parameter s € (0, c0) indicates how close to ¢ an input point must
be before the projection begins to taper off. At s ~ 1.4, most points within
the unit sphere around ¢ will be unmoved, while points outside the unit
sphere (and those inside and near the boundary of the unit sphere) will be
projected onto the unit sphere’s surface.

IThis is used purely to avoid errors when running the SmoothLayer. Regardless of €’s
size, the layer will implement an ambient isotopy and the image of line segments under a
SmoothLayer will have a continuous tangent vector.

?For convenience, the version of the SmoothLayer used to obtain this paper’s results
restricted m to the open interval (0,1). This does not prevent the SmoothLayer from
implementing an ambient isotopy.
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Figure 3.6: Spatial distortion for s ~

circle.

1.4. Dotted line represents the unit

As s — oo, points ever closer to ¢ will be projected onto the surface of
the unit sphere, and the projection becomes less “soft.”
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Figure 3.7: Spatial distortion as s — oo.

As s — 0, points far outside the unit sphere will still be projected onto
its surface, but closer points will instead be strongly drawn toward ¢.
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Figure 3.8: Spatial distortion as s — 0.

Expected behavior for the SmoothLayer is for s to end up greater than
1.4. Values of s less than 1.4 are rarely helpful in untangling knots.

Efficacy

The smoothLayer is most effective when placed among the final layers in
a neural network. If it accepts as input an unknot that has been untangled
to the point where it resembles a jagged loop, the SmoothLayer immedi-
ately converts it into an almost perfect circle.

Figure 3.9: An ideal input and output for the SmoothLayer.

This same effect could be accomplished with several layers that perform
local smoothing transformations on the knot, each operating at a different
location. The advantage of the SmoothLayer is that those operations can

be reduced to a single layer.
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3.4 FoldLayer

This layer folds a plane of its choice into a parabolic surface. First, it reori-
ents space via a trainable rotation matrix R and a translation vector ¢ such
that

vi — R(vi — ).

This maps a particular plane in R? to the z, y plane. Next, the FoldLayer
curls this new z, y plane upwards or downwards along the z-axis, creating
a parabolic surface via the map

(z,y,2) = (2,y,2 + ay?),

where a € R is a trainable strength parameter. Positive values of a corre-
spond to an upwards curl, while negative values result in a downwards
curl. The curl becomes more pronounced when |a| is large.

Once this transformation is complete, the FoldLayer returns space
back to its original orientation, first applying the inverted rotation matrix
R ™! and then adding the translation vector .

Efficacy

Of the layers listed in this section, the FoldLayer proved the least pow-
erful. It could only effectively untangle knots when placed into a neural
network that contained other kinds of custom layers. This was likely due
to two factors.

1. Nearby points are stretched farther from each other at locations more
distant from the base of the parabolic surface. These spatial distor-
tions can cause the vertices of a polygonal knot to become unevenly
distributed, which makes the discrete Mobius energy a worse approx-
imation to the continuous Mdbius energy.

2. The FoldLayer is unable to perform small, local perturbations upon
a knot. These are often a necessity when correcting entanglements.
As a result, while the FoldLayer might be able to fix macro-scale
tangles, it requires the assistance of other layers to do so on the micro
scale.
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Untangling Knots

The custom layers described in the previous section were able to success-
fully untangle several sample knots.

4.1 Experimental Setup

We used the same neural network architecture when untangling each of our
sample knots. It consisted of 24 stacked trios of a TwistLayer, followed
by a FoldLayer, followed by a GravityLayer. Then, at the end, a single
SmoothLayer was added. This produced a neural network with 73 layers
total.

The networks were implemented in Keras, and trained using the Nadam
optimizer Each network was trained for 3000 epochs on a different polyg-
onal knot with 400 vertices, all of which were approximations to some com-
monplace smooth knot.

Additionally, some of our training knots were ”pre-tangled” in order
to make the task of untangling them harder for the neural network to ac-
complish. To tangle the knots, we ran their vertices through a function
that applied a different 3D rotation matrix to the data depending on how
far they were from the origin. A vertex ¥ with norm ||7||2 would be run
through a rotation with parameters for its angles as follows:

Yaw = cos(4]|D]]2) * sin(2||7||2)
Pitch = cos(2]|v]|2) * sin(4||7]|2)
Roll = — cos(2]|v]|2) * sin(2||7]|2)

'In practice, Nesterov momentum helped prevent polygonality violations.
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This transformation implements an ambient isotopy, and so should make
a knot more complicated without changing the equivalence class to which
it belongs.

Since there is some randomness in the selection of our neural networks’
initial parameters, we performed the training process 3 times on each knot
to showcase that the neural networks” performance was not heavily de-
pendent on their initial conditions. The results of these trials are detailed
below.

4.2 Results

We will begin with less visually complex knots, then proceed to more com-
plex ones at the end of the section.

Oval

Original Trial 1

Trial 2 Trial 3
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We begin with an extremely obvious unknot: an oval. The unknot with
minimum energy is a circle, so our neural network merely compresses its

input into a ring-shape.

Sixteen-point star

Original

Trial 1

RNy
R

R
.
/
M -1
L
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This variant of the unknot is a flat, sixteen-point star. It tests the neural

network’s ability to smooth several jagged locations at once.

The neural network accomplishes its task well. Each of the trials re-
sulted in a near-perfect circle.
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Lissajous unknot

Original Trial 1

Trial 2 Trial 3

This is a very simple Lissajous unknot. The neural network is able to un-
tangle it quite easily, though it occasionally has difficulties removing one
or two twists. In one of our trials, it left the Lissajous knot in the form of a
tigure-eight.
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Lissajous unknot (tangled)

Original Trial 1
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Trial 2 Trial 3

After harshly tangling the Lissajous unknot, our neural network begins to
leave more twisted segments in place, though it is still able to reduce the
knot energy of its input considerably. All three trials left two crossings in
place, and trial 1 comes very close to leaving three.

This displays a limitation of the neural network architecture: the con-
cluding SmoothLayer cannot be trained to remove the final crossings on
its own, and so local parameter changes will be less effective at remov-
ing these seemingly trivial twists. An architecture that concluded with a
TwistLayer could potentially surmount this problem. Alternatively, a
version of the loss function that took into account the Mobius energy of the
knot produced at intermediate layers, rather than solely the Mobius energy
of the output, might be able to avoid the problem as well.



54 Untangling Knots

(2, 3)-torus knot

Original Trial 1

Trial 3

The (2, 3)-torus knot, or the trefoil knot, is non-trivial. Since this version
of the trefoil knot already possesses a low knot energy, the neural network
behaves correctly and barely modifies it.
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(2, 3)-torus knot (tangled)

Original

Trial 1

This version of the trefoil knot has been tangled, and has a high initial knot
energy. The neural network successfully smooths the knot but is (correctly)

unable to reduce it to the unknot.
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(4, 7)-torus knot

Original Trial 1

Trial 2 Trial 3

The (4, 7)-torus knot is significantly more visually complicated than the
trefoil knot, but this variant is still very close to reaching a minimal knot
energy. The neural network intelligently avoids disturbing the existing en-
ergy minimum in all three of our trials, making only minor improvements
to the knot energy each time.

Since the (4, 7)-torus knot is non-trivial, we are unable to convert it into
a visually recognizable unknot. As with the (2, 3)-torus knot, the neural
network behaves correctly on this front.
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(1, 6)-torus knot (tangled)

Original Trial 1

Trial 2 Trial 3
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The (1,6)-torus knot is equivalent to the unknot. Tangling it, however,
makes it difficult to recognize as such.

The neural network succeeds in transforming the torus knot into a ring-
like shape, albeit one with several twists along its perimeter. The knot en-
ergy of the output is significantly reduced.

4.3 Conclusions and Future Work

Our neural network shows a lot of promise. It is able to untangle com-
plicated knots that the human eye would be unable to easily identify as
the unknot. There is, however, clear room for improvement. The crossed
segments from the tangled Lissajous and the (1, 6)-torus knot trials remain,
despite their existence contributing to a higher knot energy. Additional lay-
ers, or a modified neural network architecture, might be able to resolve the
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problem.

Furthermore, the two methods for preventing polygonality violations
discussed in section could be further developed. At present, whether a
neural network can transform a set of vertices into a visually recognizable
unknot is only a heuristic for whether the polygonal knot represented by
the vertices is actually equivalent to the unknot. Polygonality violations,
though unlikely in practice, can still occur with the present neural network
architecture.

If polygonality violations could be ruled out altogether, the polygonal
knots whose vertices are represented by our neural network’s input and
output would always be ambient isotopic to one another, and whether the
output is visually recognizable as the unknot would be a sufficient condi-
tion for whether the input is the unknot as well. Even without these guar-
antees, the neural network performs quite well-polygonality violations are
rare, and the neural network constrains itself to legal operations when try-
ing to reduce a knot’s energy. Nevertheless, future work can and should
attempt to reduce the frequency of polygonality violations to zero.
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